

Review of MOS technology

- Basic MOS Transistors,
- Enhancement and Depletion mode transistors,
- N MOS and CMOS process,
- Thermal aspects of processing,
- Production of masks.

Types of Synthesis

- Behaviour to Structure
 - System
 - Algorithmic
 - FSM/Logic
 - Circuit
- Structure to Layout
 - System Partitioning
 - Chip Floorplanning
 - Module generation
 - Cell generation

VLSI Realization Process

Customer's need

Determine requirements

Write specifications

Design synthesis and Verification

Test development

Fabrication

Manufacturing test

Chips to customer

Reliability of Integrated Circuits

Design and verification

- -Important part before the product is taped out
- ➤ Manufacturing test
 - -Generally determines the quality and reliability
 - -Various tests are performed using numerous methods
 - Structural test
 - Functional test
 - Power consumption test

Verification vs. Test

Verification

- Verifies correctness of design.
- Performed by simulation, formal methods.
- Performed once prior to manufacturing.
- Responsible for quality of design.

Test

- Verifies correctness of manufactured hardware.
- Two-part process:
 - 1. Test generation: software process executed once during design
 - 2. Test application: electrical tests applied to hardware
 - Test application performed on every manufactured device.
- Responsible for quality of devices.

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

FET

FET's (Field – Effect Transistors) are much like BJT's (Bipolar Junction Transistors).

Similarities:

- Amplifiers
- Switching devices
- Impedance matching circuits

Differences:

- FET's are voltage controlled devices whereas BJT's are current controlled devices.
- FET's also have a higher input impedance, but BJT's have higher gains.
- •FET's are less sensitive to temperature variations and because of there construction they are more easily integrated on IC's.
- FET's are also generally more static sensitive than BJT's.

MOS Capacitor

Gate and body form MOS capacitor

- Operating modes
 - Accumulation
 - Depletion
 - Inversion

Terminal Voltages

Mode of operation depends on V_g, V_d, V_s

$$-V_{gs} = V_g - V_s$$

$$-V_{gd} = V_g - V_d$$

$$V_{ds} = V_{d} - V_{s} = V_{gs} - V_{gd}$$

- Source and drain are symmetric diffusion terminals
 - By convention, source is terminal at lower voltage
 - Hence $V_{ds} \ge 0$
- nMOS body is grounded. First assume source is 0 too.
- Three regions of operation
 - Cutoff
 - Linear
 - Saturation

nMOS Cutoff

- No channel
- $I_{ds} = 0$

nMOS Linear

Channel forms

Current flows from d to sy

 $-e^{-}$ from s to d

I_{ds} increases with V_{ds}

• Similar to linear resistor

nMOS Saturation

- Channel pinches off
- I_{ds} independent of V_{ds}
- We say current saturates

• Similar to current source

MOSFET's

MOSFETs have characteristics similar to JFETs and additional characteristics that make then very useful

There are 2 types of MOSFET's:

- Depletion mode MOSFET (D-MOSFET)
 - Operates in Depletion mode the same way as a JFET when $VGS \le 0$
 - Operates in Enhancement mode like E-MOSFET when VGS > 0
- Enhancement Mode MOSFET (E-MOSFET)
 - Operates in Enhancement mode
 - IDSS = 0 until VGS > VT (threshold voltage)

n-Channel E-MOSFET showing channel length L and channel width W

n-channel MOSFET.

p-channel MOSFET

Depletion-type MOSFET (D-MOSFET)

Enhancement-type MOSFET (E-MOSFET)

MOSFET Symbols

Symbols

MOSFET Operating Characteristics

• Cutoff Region: Where the current flow is essentially (Accumulator Region)

$$V_{DS} = 0$$
; $V_{GS} < V_t$

• Non-saturated Region: Weak inversion region where the drain current is dependent on the gate and drain voltage (w.r.t. substrate).

$$V_{DS} < V_{GS} - V_t$$

• Saturated Region: Channel is strongly involved and drain current flow is ideally independent of the drain-source voltage (Inversion)

$$V_{DS} > V_{GS} - V_t$$

Depletion-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to n-doped regions. These N-doped regions are connected via an n-channel. This n-channel is connected to the Gate (G) via a thin insulating layer of SiO_2 . The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS.

Basic Operation

A Depletion MOSFET can operate in two modes: Depletion or Enhancement mode.

Depletion-type MOSFET in Depletion Mode

Depletion mode

The characteristics are similar to the JFET.

When
$$V_{GS} = 0V$$
, $I_D = I_{DSS}$

When
$$V_{GS} < 0V$$
, $I_D < I_{DSS}$

The formula used to plot the Transfer Curve still applies:

Depletion-type MOSFET in Enhancement Mode

Enhancement mode

 $V_{GS} > 0V$, I_D increases above I_{DSS}

The formula used to plot the

Transfer Curve still applies:

$$I_D = I_{DSS} (1 - \frac{V_{GS}}{V_P})^2$$

(note that VGS is now a positive polarity)

p-Channel Depletion-Type MOSFET

The p-channel Depletion-type MOSFET is similar to the n-channel except that the voltage polarities and current directions are reversed.

Enhancement-Type MOSFET Construction

The Drain (D) and Source (S) connect to the to n-doped regions. These n-doped regions are connected via an n-channel. The Gate (G) connects to the p-doped substrate via a thin insulating layer of SiO_2 . There is no channel. The n-doped material lies on a p-doped substrate that may have an additional terminal connection called SS.

Basic Operation

The Enhancement-type MOSFET only operates in the enhancement

mode.

$$V_{Dsat} = V_{GS} - V_T$$

V_{GS} is always positive

As V_{GS} increases, I_D increases

But if V_{GS} is kept constant and V_{DS} is increased, then I_D saturates (I_{DSS}) The saturation level, V_{DSsat} is reached.

Transfer Curve

To determine I_D given V_{GS} :

where V_T = threshold voltage or voltage at which the MOSFET turns on. $k = \frac{I_{D(on)}}{(V_{GS(ON)} - V_T)^2}$

k = constant found in the specification sheet k can also be determined by using values at a specific point and the formula: $V_{Dsat} = V_{GS} - V_{T}$

p-Channel Enhancement-Type MOSFETs

The p-channel Enhancement-type MOSFET is similar to the n-channel except that the voltage polarities and current directions

MOSFET Handling

MOSFETs are very static sensitive. Because of the very thin SiO₂ layer between the external terminals and the layers of the device, any small electrical discharge can stablish an unwanted conduction.

Protection:

- Always transport in a static sensitive bag
- •Always wear a static strap when handling MOSFETS
- Apply voltage limiting devices between the Gate and Source, such as back-to-back Zeners to limit any transient voltage.

CMOS

CMOS – Complementary MOSFET p-channel and n-channel

Advantage:

- Useful in logic circuit designs
- Higher input impedance
- Faster switching speeds
- Lower operating power levels

Summary Table

$$I_D = I_{DSS} \left(1 - \frac{V_{GS}}{V_P}\right)^2$$

- So far, we have treated transistors as ideal switches
- An ON transistor passes a finite amount of current
 - Depends on terminal voltages
 - Derive current-voltage (I-V) relationships
- Transistor gate, source, drain all have capacitance
 - $-I = C (\Delta V/\Delta t) \rightarrow \Delta t = (C/I) \Delta V$
 - Capacitance and current determine speed
- Also explore what a "degraded level" really means

I-V Characteristics

- In Linear region, I_{ds} depends on
 - How much charge is in the channel?
 - How fast is the charge moving?

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} =

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} = CV

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel

•
$$Q_{channel} = CV$$

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

Channel Charge

- MOS structure looks like parallel plate capacitor while operating in inversion
 - Gate oxide channel
- Q_{channel} = CV

•
$$C = C_g = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL$$

•
$$V = V_{gc} - V_t = (V_{gs} - V_{ds}/2) - V_t$$

$$C_{ox} = \varepsilon_{ox} / t_{ox}$$

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- v =

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- E =

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- $E = V_{ds}/L$
- Time for carrier to cross channel:

$$-t=$$

- Charge is carried by e-
- Carrier velocity v proportional to lateral E-field between source and drain
- $v = \mu E$ μ called mobility
- $E = V_{ds}/L$
- Time for carrier to cross channel:

$$-t=L/v$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} =$$

nMOS Linear I-V

- Now we know
 - How much charge Q_{channel} is in the channel
 - How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

nMOS Linear I-V

Now we know

- How much charge Q_{channel} is in the channel
- How much time t each carrier takes to cross

$$I_{ds} = \frac{Q_{\text{channel}}}{t}$$

$$= \mu C_{\text{ox}} \frac{W}{L} \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$= \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2} \right) V_{ds}$$

$$\beta = \mu C_{\text{ox}} \frac{W}{L}$$

nMOS Saturation I-V

- If $V_{gd} < V_t$, channel pinches off near drain
 - When $V_{ds} > V_{dsat} = V_{gs} V_{t}$
- Now drain voltage no longer increases current

$$I_{ds} =$$

nMOS Saturation I-V

• If $V_{gd} < V_t$, channel pinches off near drain

- When
$$V_{ds} > V_{dsat} = V_{gs} - V_{t}$$

Now drain voltage no longer increases current

$$I_{ds} = \beta \left(V_{gs} - V_t - \frac{V_{dsat}}{2} \right) V_{dsat}$$

nMOS Saturation I-V

If V_{gd} < V_t, channel pinches off near drain

- When
$$V_{ds} > V_{dsat} = V_{gs} - V_{t}$$

• Now drain voltage no longer increases current
$$I_{ds} = \beta \left(V_{gs} - V_t - V_{dsat} \right) V_{dsat}$$

$$=\frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2}$$

nMOS I-V Summary

Shockley 1st order transistor models

$$I_{ds} = \begin{cases} 0 & V_{gs} < V_t & \text{cutoff} \\ \beta \left(V_{gs} - V_t - \frac{V_{ds}}{2}\right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_t\right)^2 & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

Example

Example: a 0.6 μm process from AMI semiconductor

$$-t_{ox} = 100 \text{ Å}$$

$$- \mu = 350 \text{ cm}^2/\text{V*s}$$

$$-V_{t} = 0.7 V$$

Plot I_{ds} vs. V_{ds}

$$-V_{gs} = 0, 1, 2, 3, 4, 5$$

– Use W/L =
$$4/2 \lambda$$

$$\beta = \mu C_{ox} \frac{W}{L} = (350) \left(\frac{3.9 \cdot 8.85 \cdot 10^{-14}}{100 \cdot 10^{-8}} \right) \left(\frac{W}{L} \right) = 120 \frac{W}{L} \mu A / V^{2}$$
MOS devices

pMOS I-V

- All dopings and voltages are inverted for pMOS
- Mobility μ_p is determined by holes
 - Typically 2-3x lower than that of electrons μ_n
 - -120 cm²/V*s in AMI 0.6 μ m process
- Thus pMOS must be wider to provide same current
 - In this class, assume μ_n / μ_p = 2

Capacitance

- Any two conductors separated by an insulator have capacitance
- Gate to channel capacitor is very important
 - Creates channel charge necessary for operation
- Source and drain have capacitance to body
 - Across reverse-biased diodes
 - Called diffusion capacitance because it is associated with source/drain diffusion

Gate Capacitance

- Approximate channel as connected to source
- $C_{gs} = \varepsilon_{ox}WL/t_{ox} = C_{ox}WL = C_{permicron}W$
- $C_{permicron}$ is typically about 2 fF/ μm

Slide 53

Diffusion Capacitance

- C_{sb}, C_{db}
- Undesirable, called *parasitic* capacitance
- Capacitance depends on area and perimeter
 - Use small diffusion nc
 - Comparable to C_g
 for contacted diff
 - $\frac{1}{2} C_g$ for uncontacted
 - Varies with process

Pass Transistors

- We have assumed source is grounded
- What if source > 0?
 - e.g. pass transistor passing V_{DD}

Pass Transistors

- We have assumed source is grounded
- What if source > 0?

$$-$$
 e.g. pass transistor passing $V_{\rm DD}$

- $V_g = V_{DD}$
 - If $V_s > V_{DD} V_t$, $V_{gs} < V_t$

- Called a degraded "1"
- Approach degraded value slowly (low I_{ds})
- pMOS pass transistors pull no lower than V_{tp}

Pass Transistor Ckts

$$V_{DD}$$
 V_{DD}
 V_{DD}
 V_{DD}
 V_{DD}
 V_{DD}

Pass Transistor Ckts

$$V_{DD} \downarrow V_{SD} = V_{DD} - V_{tn}$$

$$V_{DD}$$

$$V_{s} = |V_{tp}|$$

$$V_{SS}$$

Effective Resistance

- Shockley models have limited value
 - Not accurate enough for modern transistors
 - Too complicated for much hand analysis
- Simplification: treat transistor as resistor
 - Replace $I_{ds}(V_{ds}, V_{gs})$ with effective resistance R
 - $I_{ds} = V_{ds}/R$
 - R averaged across switching of digital gate
- Too inaccurate to predict current at any given time
 - But good enough to predict RC delay

RC Delay Model

- Use equivalent circuits for MOS transistors
 - Ideal switch + capacitance and ON resistance
 - Unit nMOS has resistance R, capacitance C
 - Unit pMOS has resistance 2R, capacitance C
- Capacitance proportional to width
- Resistance inversely proportional to width

RC Values

- Capacitance
 - $-C = C_g = C_s = C_d = 2 \text{ fF/}\mu\text{m}$ of gate width
 - Values similar across many processes
- Resistance
 - − R ≈ 6 KΩ* μ m in 0.6um process
 - Improves with shorter channel lengths
- Unit transistors
 - May refer to minimum contacted device (4/2 λ)
 - Or maybe 1 μ m wide device
 - Doesn't matter as long as you are consistent

NMOS PROCESS

Fabrication of nmos

Processing is carried on single crystal silicon of high purity on which required P impurities are introduced as crystal is grown □ Process start with the oxidation of the silicon substrate, in which a relatively thick silicon dioxide layer, also called field oxide, is created on the surface.

☐ Then, the field oxide is selectivity etched to expose the silicon surface on which the MOS transistor will be created.

☐ The surface is covered with a thin, high-quality oxide layer, which will eventually form the gate oxide of the MOS transistor

- ☐On top of the thin oxide layer, a layer of polysilicon (Polycrystalline silicon) is deposited.
- □Polysilicon is used both as gate electrode material for MOS transistors and also as an interconnect medium in silicon integrated circuits.
- □Undoped polysilicon has relatively high resistivity.
- ☐ The resistivity of polysilicon can be reduced, however, by doping it with impurity atoms.

□After deposition, the polysilicon layer is patterned and etched to form the interconnects and the MOS transistor gates.

☐ The thin gate oxide not covered by polysilicon is also etched away, which exposes the base silicon surface on which the source and drain junctions are to be formed.

- ☐ The entire silicon surface is then doped with a high concentration of impurities, either through **diffusion or ion implantation**(in this case with donor atoms to produce n- type doping)
- ☐ This shows that the doping penetartes the exposed areas on the silicon surface, ultimately creating two n type regions(Source and drain junctions) in the p-type substrate.

☐ The impurity doping also penetrates the polysilicon on
the surface, reducing its resistivity.
□Polysilicon gate, which is patterned before doping,
actually defines the precise location of the channel region
and hence, the location of the source and the drain
regions.
☐ This procedure allows very precise positioning of the
two regions relative to the gate, it is also called the self-
aligned process.

☐ Once the source and drain regions are completed, the entire surface is again covered with an insulating layer of silicon dioxide

☐ The insulating oxide layer is then patterned in order to provide contact windows for the drain and source junctions

☐ The surface is covered with evaporated aluminum which will form the interconnects

CMOS PROCESS

MOS devices Slide 75

Physical structure

Technology

NMOS physical structure:

- p-substrate
- n+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1
- L_{eff}<L_{drawn} (lateral doping effects)

NMOS layout representation:

- Implicit layers:
 - oxide layers
 - substrate (bulk)
- Drawn layers:
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

5/6/2014

Physical structure

PMOS physical structure:

- p-substrate
- n-well (bulk)
- p+ source/drain
- gate oxide (SiO₂)
- polysilicon gate
- CVD oxide
- metal 1

PMOS layout representation:

- Implicit layers:
 - oxide layers
- Drawn layers:
 - n-well (bulk)
 - n+ regions
 - polysilicon gate
 - oxide contact cuts
 - metal layers

0. Start:

- For an n-well process the starting point is a p-type silicon wafer:
- wafer: typically 75 to 300mm in diameter and less than 1mm thick

1. Epitaxial growth:

- A single p-type single crystal film is grown on the surface of the wafer by:
 - subjecting the wafer to high temperature and a source of dopant material
- The epi layer is used as the base layer to build the devices

2. N-well Formation:

- PMOS transistors are fabricated in n-well regions
- The first mask defines the n-well regions
- N-well's are formed by ion implantation or deposition and diffusion
- Lateral diffusion limits the proximity between structures
- Ion implantation results in shallower wells compatible with today's fineline processes

3. Active area definition:

- Active area:
 - planar section of the surface where transistors are build
 - defines the gate region (thin oxide)
 - defines the n+ or p+ regions
- A thin layer of SiO₂ is grown over the active region and covered with silicon nitride

4. Isolation:

- Parasitic (unwanted) FET's exist between unrelated transistors (Field Oxide FET's)
- Source and drains are existing source and drains of wanted devices
- Gates are metal and polysilicon interconnects
- The threshold voltage of FOX FET's are higher than for normal FET's

- FOX FET's threshold is made high by:
 - introducing a channel-stop diffusion that raises the impurity concentration in the substrate in areas where transistors are not required
 - making the FOX thick

4.1 Channel-stop implant

 The silicon nitride (over n-active) and the photoresist (over n-well) act as masks for the channel-stop implant

4.2 Local oxidation of silicon (LOCOS)

- The photoresist mask is removed
- The SiO₂/SiN layers will now act as a masks
- The thick field oxide is then grown by:
 - exposing the surface of the wafer to a flow of oxygen-rich gas
- The oxide grows in both the vertical and lateral directions
- This results in a active area smaller than patterned

- Silicon oxidation is obtained by:
 - Heating the wafer in a oxidizing atmosphere:
 - Wet oxidation: water vapor, T = 900 to 1000°C (rapid process)
 - Dry oxidation: Pure oxygen, T = 1200°C (high temperature required to achieve an acceptable growth rate)
- Oxidation consumes silicon
 - SiO₂ has approximately twice the volume of silicon
 - The FOX is recedes below the silicon surface by 0.46X_{FOX}

5. Gate oxide growth

- The nitride and stress-relief oxide are removed
- The devices threshold voltage is adjusted by:
 - adding charge at the silicon/oxide interface
- The well controlled gate oxide is grown with thickness t_{ox}

6. Polysilicon deposition and patterning

- A layer of polysilicon is deposited over the entire wafer surface
- The polysilicon is then patterned by a lithography sequence
- All the MOSFET gates are defined in a single step
- The polysilicon gate can be doped (n+) while is being deposited to lower its parasitic resistance (important in high speed fine line processes)

7. PMOS formation

- Photoresist is patterned to cover all but the p+ regions
- A boron ion beam creates the p+ source and drain regions
- The polysilicon serves as a mask to the underlying channel
 - This is called a self-aligned process
 - It allows precise placement of the source and drain regions
- During this process the gate gets doped with p-type impurities
 - Since the gate had been doped n-type during deposition, the final type (n or p) will depend on which dopant is dominant

8. NMOS formation

- Photoresist is patterned to define the n+ regions
- Donors (arsenic or phosphorous) are ion-implanted to dope the n+ source and drain regions
- The process is self-aligned
- The gate is n-type doped

9. Annealing

- After the implants are completed a thermal annealing cycle is executed
- This allows the impurities to diffuse further into the bulk
- After thermal annealing, it is important to keep the remaining process steps at as low temperature as possible

10. Contact cuts

- The surface of the IC is covered by a layer of CVD oxide
 - The oxide is deposited at low temperature (LTO) to avoid that underlying doped regions will undergo diffusive spreading
- Contact cuts are defined by etching SiO₂ down to the surface to be contacted
- These allow metal to contact diffusion and/or polysilicon regions

11. Metal 1

 A first level of metallization is applied to the wafer surface and selectively etched to produce the interconnects

12. Metal 2

- Another layer of LTO CVD oxide is added
- Via openings are created
- Metal 2 is deposited and patterned

13. Over glass and pad openings

- A protective layer is added over the surface:
- The protective layer consists of:
 - A layer of SiO₂
 - Followed by a layer of silicon nitride
- The SiN layer acts as a diffusion barrier against contaminants (passivation)
- Finally, contact cuts are etched, over metal 2, on the passivation to allow for wire bonding.

Advanced CMOS processes

- Shallow trench isolation
- n+ and p+-doped polysilicon gates (low threshold)
- source-drain extensions LDD (hot-electron effects)
- Self-aligned silicide (spacers)
- Non-uniform channel doping (short-channel effects)

Process enhancements

- Up to eight metal levels in modern processes
- Copper for metal levels 2 and higher
- Stacked contacts and vias
- Chemical Metal Polishing for technologies with several metal levels
- For analogue applications some processes offer:
 - capacitors
 - resistors
 - bipolar transistors (BiCMOS)

Main Step for n-well Process

THERMAL ASPECTS OF PROCESSING

- Processes involved in making nMOS and CMOS devices have differing high temperature sequences
- The CMOS p-well process, for example, has a high temperature p-well diffusion process (1100 to 1250°C),
- nMOS process having no such requirement. Because of the simplicity, ease of fabrication, and high density per unit area of nMOS circuits,
- many of the earlier IC designs, still in current use, have been fabricated using nMOS technology and it is likely that nMOS and CMOS system designs will continue to co-exist for some time to come.

Thermal sequence difference between nMOS and CMOS processes.

Production of masks

- masks are produced by standard optical techniques
- uses an E-beam machine.

Mask Making

- Starting material consists of chrome-plated glass plates which are coated with an E-beam sensitive resist.
- E-beam machine is loaded with the mask description data (MEBES).
- Plates are loaded into the E-beam machine, where they are exposed with the patterns specified by the customer's mask data.
- After exposure to the E-beam, the plates are introduced into a developer to bring out the patterns left by the Ebeam in the resist coating.
- The cycle is followed by a bake cycle and a plasma desumming, which removes the resist residue.
- The chrome is then etched and the plate is stripped of the remaining E-beam resist.